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The physical and numerical problems of kinetic simulation of a bounded electrostatic 
plasma system in one planar dimension are examined, and solutions to them are presented. 
These problems include particle absorption, reflection and emission at boundaries, the 
solution of Poisson’s equation under non-periodic boundary conditions, and the treatment of 
an external circuit connecting the boundaries. The methods which are described here are 
implemented in a code named PDWI, which is available from Professor C. K. Birdsall, 
Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 
94720. c 1989 Academic Press, Inc. 

INTRODUCTION 

In recent years, many plasma simulation problems have become of interest which 
are not spatially periodic. These problems include (i) devices, such as magnetic 
mirrors [ 11, Q-machines [2], and double-plasma machines, (ii) spatial effects such 
as wave damping and mode conversion, (iii) boundaries between different plasmas 
as in double layers, and (iv) theory problems such as the Pierce diode [3]. Over 
the past twenty years, many non-periodic simulations have been performed 
(Birdsall and Bridges [4], and Burger [S, 63 are some early examples), but no 
systematic account of the problems involved in these simulations has been 
published; in fact, very little has been published at all regarding the simulation of 
bounded plasma systems. This has resulted in much duplicated effort and many 
avoidable errors. The purpose of this article is to begin to fill the void in the 
bounded plasma simulation method literature. 

The methods described here were implemented in the computer code PDWl, and 
have been used successfully since 1983 by members of the Berkeley Plasma Theory 
and Simulation group (some examples are [7-lo]). (PDW is an acronym for our 
1983 Plasma Device Workshop.) The code is documented and set up to run on the 
CRAY-1 computers of the National Magnetic Fusion Energy Computer Center. 
The code and documentation are available from the Plasma Theory and Simulation 
group at the University of California, Berkeley [ 111. Some of the work to be 
presented here has already been published as part of Chapter 16 of Birdsall and 
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Langdon [ 121. Most of the points are expanded upon here, but some points are 
more fully explained in [ 121 (particle injection, for example). (Reference [ 121 is a 
good reference for particle simulation in general.) 

The incorporation of boundaries into the simulation of a 1D plasma introduces 
new considerations of both physical and numerical origin. These considerations 
may be grouped into three broad categories: the interaction of particles with the 
boundaries, the solution of Poisson’s equation with non-periodic boundary condi- 
tions, and the inclusion of an external circuit connecting the bounding planes. The 
external circuit has received almost no attention in the past, but is a real part of 
any physical model. Even an open circuit is non-trivial, as the boundaries 
themselves form a capacitor. A series RLC circuit with both AC and DC voltage 
sources (also in series) is considered here. More complicated circuits are, of course, 
possible, but will not be discussed. 

Each of these categories present problems which are not difficult to solve, but do 
require some care. This article will explore these problems category by category and 
present solutions. The extension of these solutions to the problems of two- and 
three-dimensional simulations is not trivial, but is straightforward. 

MODEL 

Before considering the problems of simulating a 1D plasma, it is worth reviewing 
some of the features of the 1D model itself. First of all, it is important to note that 
the electric field of a particle (which represents a charge sheet in three dimensions) 
does not fall off with distance, but rather is constant. One consequence of this is 
that it is impossible to define a unique ground potential at infinity as is possible in 
three dimensions. The point chosen to be at zero potential is completely arbitrary. 
It may be designated in a circuit diagram as a ground symbol, but it should be 
remembered that there really is no ground for a charge to flow to or from. 

One-dimensional simulations are not limited to one velocity dimension. Only the 
variation of quantities in the perpendicular directions is required to be zero. Three 
velocity dimensions and a constant magnetic field in an arbitrary direction have 
already been implemented in PDWl, and fully electromagnetic 1D simulations have 
been implemented by others. 

Because the electric field of a particle in one dimension does not fall off with dis- 
tance, there is no functional difference between a boundary between two regions of 
a plasma and a boundary between a plasma and a conducting wall (or between a 
plasma and anything else) aside from the particle emission from the boundary. This 
is very different from the situations in two and three dimensions. In one dimension, 
any information a particle carries beyond a boundary is of no interest regardless of 
the nature of the region beyond the boundary because the electric field due to the 
particle will be the same whether it is located on that boundary or infinitely far 
beyond it. 
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For future reference and to define some important variables, let us consider the 
electrostatic energy of a 1D system. According to Gauss’ law, 

E(Z)-E(O)=$?(x)dx, 
0 

so surface charge densities can be defined at the left- and right-hand boundaries as 

(TL = EOE(0) 

and (1) 

0 R = -&,E(Z) 

so that 

I 
/ 
p(x)dx+a, +cr, =o, 

0 

i.e., the total charge of the system including the boundaries is zero. This is only a 
definition. If the boundaries represent conducting walls, then these surface charges 
will be the surface charges which are physically on the walls. If the boundaries 
represent only an end to the region of interest, then the surface charges will 
represent charges beyond the boundary. 

The electrostatic energy within the system is 

w,= i 
’ co -E=dx 
02 

Integrating this by parts (using E = - dcj/dx and p = co dE/dx), 

WE= 
s 
;;y#dx+?E(O)(, -+&j, 

This result is independent of the reference potential, thanks to Eq. (2), so it is 
convenient to choose & as zero for the entire simulation (in a sense choosing the 
left boundary as ground potential). This choice means that gL need not be known 
to calculate the electrostatic energy (which is an essential diagnostic). Since oL is 
not needed for the dynamical equations either (and can be calculated at any time 
from Eq. (2)), oL can be eliminated as a dynamical variable in a simulation (this is 
done in PDWl). 

The circuit model with all of its dynamical variables can now be diagrammed (see 
Fig. 1). The background current, shown as JBACK in Fig. 1, has not been mentioned 
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FIG. 1. Model for external circuit with dynamical variables 6, V, I, and Q as defined in text. Arrow 
represents a constant background current density (which could also be represented as an external 
constant current source in parallel with the external circuit shown). 

and will not be mentioned again. Physically, it can represent either current due to 
a heavy background species or a parallel circuit containing a constant current 
source, which is important for some models. Its implementation is trivial given the 
methods for simulating the external circuit which will be presented. 

BOUNDARY-PARTICLE INTERACTIONS 

(a) Charge Accumulation at Boundaries 

In particle simulations, the electric field and potential are usually found on a 
spatial grid using a finite-difference approximation of Poisson’s equation. To do 
this the charge density must be known on the same grid, and the algorithm for 
assigning the charges of the particles to the grid is known as charge accumulation. 
Many such algorithms exist, but the most commonly used algorithm is called linear 
weighting (also sometimes CIC, cloud in cell, or PIC, particle in cell). In linear 
weighting, a particle’s full charge is assigned to a grid point if it is exactly on it, and 
if it is not, the fraction of its charge which is assigned to the grid point varies 
linearly with its distance from the grid point, reaching zero when the particle sits 
exactly on the next grid point. This weighting scheme can be represented 
graphically (see Fig. 2). Linear weighting is popular because it has the advantages 
of being simple (and therefore fast), and continuous, which reduces noise. 
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FIG. 2. Assignment of particle charge to grid-linear weighting. The charge assigned to the grid 
points due to the particle at X is represented by the heavy vertical lines. 

The problem now is how to cope with a boundary. Although every bounded 
simulation must address this problem, our searches have turned up no published 
references. What follows is partly gleaned from examining other codes and 
discussions with other simulators, and partly invention (probably re-invention). 
The method implemented in PDWl requires both a grid point at the boundary, 
representing the plasma charge density adjacent to the boundary, and a surface 
charge on the boundary (see Fig. 3). The method is diagrammed in Fig. 4. Note that 
when a particle’s position shifts from outside the boundary to inside the boundary, 
its charge jumps suddenly from being part of the charge density at the boundary 
to being part of the surface charge on the boundary. It might seem that this sudden 
jump would cause some unwanted noise, but it will be shown in the section on solv- 
ing Poisson’s equation that the noise is limited to the first grid cell and has virtually 
no effect. It is important to remember with this algorithm that the charge 
accumulated on the grid point at the boundary is only half of that which would be 
accumulated at a grid point which is not at a boundary if the physical charge 
density were the same at the two points. This can readily be seen from Fig. 4 as the 
triangle representing the charge collection of the grid point at the boundary has 
only half the area of the other grid points. In this sense, the grid cell adjacent to 
the boundary is only half as wide as a normal grid cell, and this must be compen- 
sated for. Thus for diagnostic purposes, if for nothing else, it is necessary to double 
the charge collected at the boundary to obtain the physical charge density. (Birdsall 
and Langdon [12] actually define p0 to be half of p(O). This is natural from the 
standpoint of a computer algorithm but may cause some confusion.) 

This “hard” boundary is more difficult to implement when weighting schemes 
other than the linear one are used, as they may assign charge to grid points which 
are more than a single grid spacing away from the position of a particle. The finite 
difference equations for the electric field and potential must be carefully designed to 

---- 
WALL x,, Xl X2 X3 

FIG. 3. Locations of grid points relative to boundary. 
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WALL 0 1 2 3 4 

FIG. 4. Linear weighting for a “hard” boundary system. Note the triangle for the grid point at the 
boundary is cut in half by the boundary, so that only half as much charge accumulates there as on 
nearby grid points. 

prevent the noise of absorption from affecting the potential throughout the plasma 
(see the section on the solution of Poisson’s equation). 

Other schemes which lit into the linear weighting method are “soft” boundaries. 
In these schemes particles enter the boundary gradually, i.e., the charge of a particle 
near the boundary is assigned partly to the boundary and partly to the grid. Two 
such schemes are diagrammed in Fig. 5. The first of these simply merges the plasma 
charge density at the boundary with the charge on the boundary. This method is 
numerically equivalent to the previous “hard” boundary method, but does not give 
the “real” charge on the boundaries, which may be needed in order to apply the 
boundary conditions. The second method is more faithful to the spirit of linear 
weighting. The charge density at the boundary exists, but particles are absorbed 
into the boundary slowly and thus create no noise. The problem with “soft” bound- 
ary methods is that a particle which has been partially absorbed can turn around 
and leave the neighborhood of the boundary, taking away the charge which has 
supposedly already been absorbed. This is clearly unphysical, although it may not 
always be a problem. If it is known beforehand that particles will never turn around 

a 

WALL 1 2 3 4 

b 

-1 WALL 0 1 2 3 4 

FIG. 5. Linear weighting for two “soft” boundary systems: (a) lumps together charge on and 
adjacent to the boundary; (b) weights them smoothly. 
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at the boundary or that the particles which are almost reflected at the boundary 
will not play an important role in the dynamics, then these methods are quite 
usable, though they are unlikely to be necessary. The methods described in the rest 
of this article should apply just as well to both types of boundary. 

(b) Particle Absorption 

Another problem created by the incorporation of boundaries into the model is 
the removal of particles which have left the simulation region (i.e., been absorbed 
by a boundary). Conceptually there is a scarcely a problem: once a particle is 
absorbed, it can be removed from the simulation. This removal, however, creates 
several algorithmic problems. First, it means that the number of particles in the 
simulation will vary with time. This requires some foreknowledge of the maximum 
number of particles which will exist in the simulation, since a fixed amount of 
computer memory is usually allocated to the particle array. (Some compilers allow 
more memory to be allocated when it is needed, but this can waste valuable 
computation time and is usually a programming headache.) Second, the removal of 
particles which have left the system can be an expensive process computationally, 
so an efficient algorithm is needed. In the computer, particles are assigned to 
memory locations in an array, and when particles are removed, they will generally 
leave holes in the array. The algorithm which removes particles should also repack 
the particle array so that the array is no longer than the number of particles which 
are still inside the simulation region, since a compact array makes the rest of the 
simulation more efficient. 

Since every particle must be tested, this algorithm is not likely to be vectorizable, 
and so the removal and repacking of particles is very time consuming on a vector 
machine (such as the CRAY-1). Fortunately, there is no reason why this process 
must occur every time step. Particles which are beyond the boundaries can have 
their charge added to the charge of the boundary temporarily when the charges of 
the particles are being weighted to the grid to obtain the charge density. Then when 
they are removed their charge can be permanently assigned to the boundary itself. 
This has the disadvantage that it complicates the bookkeeping necessary to account 
for all the charges, but the savings in computer time mandate this strategy. 

(c) Particle Rejlection 

Other problems arise in the treatment of particles which are reflected from a 
boundary. For simplicity, let us consider reflection at the left-hand boundary. First, 
if particles are simply reflected, meaning x c -x and u, t - v,, and the leapfrog 
method (which is almost universal) is being used, a first-order error occurs in the 
reflected velocity. (The notation xc -x means that the value of the x coordinate 
is to be replaced with the negative of the value it would have had if it were not 
being reflected. This might seem backward, but the notation is intended to mimic 
a computer language assignment statement.) The importance of this error was only 
recently noticed in the context of plasma simulation. Since the cumulative error of 
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the leapfrog method is second order, it is worth while, if not essential, to correct 
this first-order error. 

This correction can be derived from energy conservation or from considering the 
net effect the electric field near the boundary should have, both before and after 
reflection or by a careful analysis of the force on a particle, as in the derivation 
below. The error can be understood by considering the difference between a physi- 
cal particle being reflected and a simulation particle being reflected. The velocity of 
a physical particle, and therefore the rate of work done on it v . E, reverses the 
instant it is reflected. A simulation particle, on the other hand, is accelerated for a 
full time step and is then reflected. Thus the energy change is all of one sign, and 
a first-order error results. The details of this picture are complicated by the 
temporal offset between x and v, (x is known at integral time steps and v, is known 
at half-integral time steps). 

The derivation will consist of five steps: an acceleration of half a time step to 
synchronize the particle velocity with the particle position; advancement of the 
position and velocity to the time of reflection; reflection; advancement to the end 
of the time step; and a deceleration of half a time step to put the velocity back to 
the correct time for the leapfrog scheme. For simplicity, reflection from a left-hand 
wall at x = 0 will be considered for the derivation. The position and velocity are 
known after the particle has passed through the wall, so these are the natural 
variables to define as x and v,. Let to be the time at which x is known, so that t _ ,,* 
is when v, is known. The reflection occurs somewhere between t ~ r and t, (see 
Fig. 6). The electric field can be assumed to be uniform in space and time, since it 
should vary only slightly over the distance and time a particle travels in a single 
time step. 

At t=t-, the velocity is 

v-1 =u, 
qEAt 
m2 t 

!- 
x 

WALL 

FIG. 6. Positions are known at solid dots, velocities at hollow dots. 
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(remember that u, = u- rJ. At the moment of reflection, the velocity has been 
accelerated for a time At-x/u, to first order, so the velocity just before reflection 
is 

Reflection just reverses this velocity, so 

v+ = -0 +@ x At 
( > 
--- x m v, 2 ’ 

The time interval from the time of reflection to to is x/u,, so 

@ x 00 =u+ +--; 
.Y 

=-v +@ ,x-d’ 
x 

( ) m v, 2’ 

The desired velocity is v- ,,2 after reflection, which is 

u*=u de!! 
x 0 

= -v, :;(2;-At). 

This result can be rewritten so that it will apply to any boundary, so that the rule 
for reflection is now 

v, c -u, +$(2&At) 

where d is the distance between the particle and the boundary after reflection (d is 
always positive). 

Since it is to be expected that d for different particles will be uniformly distributed 
between 0 and Iv,1 At, the correction term (in parentheses) will be zero on the 
average. Thus if the reflected velocity is not corrected, the effect will not be 
catastrophic, but will rather cause some diffusion in velocity space. The root mean 
square velocity change of an ensemble of particles will be 

(J -qEdt 
‘-mJ5’ (5) 
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independent of velocity. Depending on the distribution, this diffusion will most 
likely cause some heating (the magnitude of this effect is calculable given the 
distribution), but since reflection occurs infrequently for any given particle, the 
effect may well be unimportant, particularly if the electric field is small. 

Another difficulty arising from reflection is physical. When a magnetic field is 
present, the reflection algorithm must depend on the physical situation the 
reflection is meant to be modeling. If the reflection represents an actual physical 
reflection, as at a wall, then I t -x and t’, +- -u, (with correction) is proper. If, 
however, the reflection is meant to model a symmetry plane, then an inversion 
(x +- -x, v, +- -II,, L’, t -v, and v, t -v,) is required to preserve the direction 
of the magnetic field through the reflection. This is a subtle physical point, but 
important; simple reflection does not conserve a particle’s magnetic moment, but 
inversion does (see Section 14-7 of [ 121). 

(d) Particle Emission 

The last boundary-particle problem is particle emission (or injection). This 
problem is closely related to that of initial loading of a simulation, and this discus- 
sion assumes some knowledge of loading techniques. (See Ref. [ 123 for a thorough 
discussion of both initial loading and injection techniques.) The fundamental 
difference between loading initially (t = 0) and injecting during (t > 0) a simulation 
lies in the region of phase space which is to be filled with particles. For the initial 
load, the entire simulation phase space is usually filled, whereas for injection, only 
a wedge-shaped region of phase space need be filled (see Fig. 7). The random 
variables for the initial load are x and v, whereas the random variables for the injec- 
tion are t and v. Both distributions are typically uniform in one variable (x and t, 
respectively) and non-uniform in v. The uniformity in the one variable is not as 
important as the statistical independence of the variables-lack of independence 
makes the loading and injection problems much rnore difficult. The loading 

FIG. 7. Region of phase space which must be filled with new particles each time step. 
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distribution function must be known. Let it be denoted as f(o) (maintaining the 
assumption that f(u) is independent of x and t). In terms off(u) the injection (flux) 
distribution is just of(u) (suitably normalized), thus the two problems can be solved 
by the same methods. 

The problem of injection has complications which the loading problem does not; 
for instance (i) the charge of each particle injected must be subtracted from the 
charge of the boundary, and (ii) the number of particles injected each time step 
must be chosen to average to the desired number without resorting to fractional 
particles. These are bookkeeping problems. 

Another injection problem is the temporal offset between position and velocity. 
In the standard leap-frog integration scheme, the positions are known at integral 
time steps, and the velocities are known at half-integral time steps. It is important 
that the injected particles (which are injected on the basis that position and velocity 
are known at the same time) be given an acceleration of a fraction of a time step 
(which depends on the time of emission, and may be negative) in order to 
synchronize them with the rest of the particles (see [12] for a discussion of the 
leapfrog scheme). It is unnecessary to correct the positions of the injected particles, 
since this correction is of high enough order as not to be important. 

A subtle and insidious injection effect has recently been discovered and explained 
[13]. The effect is the artificial cooling of a trapped population of electrons. The 
explanation is a combination of simulation and physical effects which has not been 
previously observed due to the rarity of long-duration bounded simulations with 
trapped particles. The effect relies on the thermodynamic properties of what is 
known to simulators as “quiet” injection. 

In most simulations, fluctuations are a problem; so, to minimize them, particles 
are put into the system with artificial regularity in order to reduce the noise 
produced by the particles (see [ 121 for a discussion of quiet loading techniques). 
This noise, however, includes the fluctuations which must occur in a plasma which 
is in thermodynamic equilibrium with the waves it supports. (It is helpful to use the 
classical idea of a wave field which is in thermodynamic contact with the particles.) 
In a particle simulation with quiet injection of particles, the wave fluctuation level 
is much smaller than that which would occur in thermodynamic equilibrium, so the 
wave field represents a cold system in contact with the plasma. 

The cooling of the trapped electrons can be understood from this new viewpoint. 
Because of the cold wave field, the particles will ail be cooling somewhat. Only the 
trapped particles, however, stay in the system long enough to cool noticeably. One 
might expect the wave field to warm up (increasing the fluctuation level), but the 
system is bounded; so the fluctuations can leave the system, primarily carried by the 
particles, only to be replaced by the constant injection of quiet particles. Put more’ 
simply, the trapped particles radiate, that radiation leaves the system, and there is 
no external source of fluctuations to warm the particles (as there would be in a 
state of thermodynamic equilibrium). This effect is not observed in periodic simula- 
tions because the fluctuations generated cannot leave the system, and the energy in 
the fluctuations is small compared with the thermal energy of the particles. 
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Other boundary effects are possible and, for the most part, are understandable in 
terms of the problems so far considered. 

SOLUTION OF POISSON’S EQUATION 

Now let us review the most common methods of solving Poisson’s equation in 
a bounded 1D system. The purpose of this review is to point up the importance of 
choosing the proper boundary conditions on the difference equations corresponding 
to the boundary conditions on the differential equations. A given boundary condi- 
tion for a differential equation has several possible difference equation analogs, but 
only one of them will prevent the noise of absorption from affecting the entire 
system. 

There are two differences in the solution of Poisson’s equation in a bounded 1D 
system as opposed to a periodic one: a non-periodic system is not net-neutral, and 
the boundary conditions are quite different. In a periodic system, the electric field 
and usually the potential are periodic. These conditions overspecify the solution, 
resulting in the net charge (and the average electric field, if the potential is periodic) 
being zero. 

In a bounded (non-periodic) system, the boundary conditions are not over- 
specified, and the net charge is not necessarily zero. The boundary conditions are, 
of course, one of the familiar types: Neumann, Dirichlet, or mixed, representing, 
respectively, a given electric field at one end (and the potential at some point), a 
given potential difference between the boundaries (and the potential at some point), 
or some linear relation between the electric field at one end and the potential 
difference between the boundaries (and the potential at some point). Fortunately, 
since the homogeneous solution of Poisson’s equation is so simple (a uniform 
electric field), it is easy to solve the system by first using almost any boundary 
conditions and then adding in the homogeneous solution to satisfy the desired 
boundary conditions. 

Briefly, the finite difference equations most commonly used in one dimension for 
Poisson’s equation are 

4 n+1-2& +L, Pn 
Ax2 = -6 (6) 

with the electric field given by 

E =L -dn+I 
” 2Ax ’ 

These E,‘s satisfy 

E n+l --&JA+I +A) 
Ax 2&() . (8) 
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These values of E, are used to accelerate particles. Another set of E*s can be defined 
which will be useful shortly. They are 

E 4 n+l -4, 
n+1/2 = - Ax 

These E values satisfy the simpler equation 

E n+1/2 -J%I/Z in 
Ax =g’ 

The values of E with integer indices can be expressed in 
values as 

E, = 
E n + 112 + En - 112 

2 . 

The half-integer values are not used to accelerate particles (although they could be) 

(9) 

(10) 

terms of the half-integer 

(11) 

and are not even equal to the field used to accelerate a particle which is half way 
between two grid points. 

The difference equation version of Eq. (3) can now be used to determine how the 
boundaries must be handled. Starting from the integral of p#, 

+ EOEN- I,Z~N- 1 +y d, Ax + (aLdo + aRdN) 1 
=- ;I:; E:,,,Ax+f(o,+$dl-&,E,,z)m, 

PN CR +yAx+&oE~-,,z (12) 

The summation represents the desired integral, so that the rest of the terms should 
be zero for all choices of the ground potential. Since the two boundaries must be 
independent, 

(13) 
E 
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are the necessary choices. We can now do away with 
result is the difference equation analog of Eqs. (1): 

the half-integer E’s, and the 

Ax 

It can now be seen why the absorption of particles does not create noise 
throughout the system. When a particle is absorbed, its charge moves from being 
counted as part of pN/2 to being counted as part of rrR. Thus d,+ r is not affected 
by the noise of absorption. The noise is limited to cL and cR, and therefore to E0 
and E,. Some simulators prefer to use E1,2 and E,.- ,,* instead of E, and E, to 
accelerate particles, avoiding the noise in favor of a small systematic error. This use 
of Et,, and EN- tf2 for E, and E, is onfy for the acceleration of particles. 

Once Poisson’s equation has been turned into a finite difference equation and the 
boundary conditions have been similarly converted, its solution is unique and 
therefore independent of the method used to solve it; however, some methods of 
solution offer advantages over others. Two types of solution are common in 1D 
simulation. One is based on the fast Fourier transform, and the other is a direct 
“marching” method. 

The preferred method for solving Poisson’s equation in periodic simulations is 
the fast Fourier transform. The FFT has three important advantages: first, it is 
naturally periodic; second, it is vectorizable on CRAY class computers, which 
allows an appreciable increase in speed; and third, in a periodic system, the different 
Fourier modes often have physical meaning (wave modes), and the FFT produces 
modal information as a by-product. 

An FFT can be used in solving the non-periodic case also, but some precondi- 
tioning is required in order to make the system net-neutral and periodic with zero 
average electric field. The natural periodicity of the FFT becomes a liability rather 
than an advantage, and furthermore, the Fourier modes will rarely, if ever, carry 
any physical significance, thus making the extra time and effort of the FFT time 
and effort wasted. The vectorizability of most of the FFT algorithm remains, 
however, which may make FFT methods profitable despite the complexity of the 
algorithm. 

One popular FFT method of solution of Poisson’s equation should be mentioned 
because, while it works adequately with periodic boundary conditions, it does not 
work with non-periodic boundary conditions. The FFT of Eq. (6) is 

(15) 

Some simulators, however, prefer a non-localized solved (usually referred to as the 
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“exact” solver), which uses the analog of this equation as derived from the 
continuous Fourier transform: 

k2& =$. (16) 

This equation does not, of course, solve Eq. (6), but rather some complicated 
difference equation involving all the grid points, i.e., this is a non-local solver. The 
dangers of this method have long been known (see Appendix E of [12]), but it 
does not usually produce serious errors for periodic systems. When the FFT is used 
to solve a system in which the charge density comes from a non-periodic system, 
however, the sudden change in the charge density at the boundaries produces large 
values for the high wave number components, and the solution via Eq. (16) is very 
different from the solution via Eq. (15). The inaccuracy will be worst near the 
boundaries (the site of the sudden change), and this is where the boundary 
conditions are to be applied. Thus severe error can arise from the inappropriate use 
of the FFT method of solving Poisson’s equation. 

The direct method of solution is simply to start with any two adjacent points 
(usually a boundary of the system), and Eq. (6) can then be applied repeatedly, 
marching across the system. The initial points may be chosen to satisfy the 
boundary conditions (Eqs. (14)), or they may be chosen arbitrarily, and the 
boundary conditions satisfied a posteriori. This method is as stable numerically as 
any other. A direct method of this type is implemented in PDWl. 

EXTERNAL CIRCUIT 

The external circuit is the most easily overlooked feature of non-periodic plasma 
simulations. The coupling of a numerical circuit simulation with a particle simula- 
tion is no trivial matter. Often, an open circuit (i.e., no charge is transported from 
one boundary to the other except as plasma particles) is desired, and it might be 
argued that this is no circuit at all. The charge which passes the boundaries must 
still be carefully accounted for, however, and, in fact, the two boundaries behave in 
a sense like a capacitor. Thinking in terms of an external circuit, even when the 
circuit is open, is a good way of ensuring that charge is not transported from one 
boundary to the other in a way which is inconsistent with the physical model. 

Some simulators have included an external circuit in their models, but only 
Birdsall and Langdon [12] have described their methods in adequate detail. The 
methods described here have certainly been used in other contexts, but they have 
not been published previously in the context of plasma simulation (except for that 
part of [12] which was based on the present work). 

An external circuit has its own intrinsic time scales which have nothing to do 
with the plasma time scales. For example, an RC circuit would have an RC decay 
time constant, and an LC circuit would have a frequency of oscillation of l/e. 

581/80/2-2 
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The simulation time step must be small enough to resolve these time scales, or the 
circuit simulation will produce inaccurate results regardless of the plasma 
parameters. 

The external circuit can be arbitrarily complex, and circuit simulation is a large 
field in its own right. Our goal is to see how a circuit simulation may be accurately 
coupled with plasma simulation. The external circuit chosen for consideration here 
is a series RLC circuit (see Fig. 1). In addition to the RLC elements, the circuit 
has both AC and DC voltage sources. The circuit equations (including the field 
equation) are 

LQ+RQ+$= V(t)- V,.Jt) (17) 

Ad = -Q + AJplasma(X = I) (18) 

and 

Pk 1) V’&x, t) = --) 
Eo 

where the boundary conditions on the electric potential are 

(19) 

(20) 

and 

V(t) = $4(x = f, t). 

The area of the boundary is A (this is introduced for dimensional reasons; it is the 
cross section of the plasma); R, L, and C represent the external circuit resistance, 
inductance, and capacitance; and 1 is the length of the plasma sytem. Jplasma is the 
net current density from the plasma at the right-hand boundary, i.e., the absorbed 
current less the emitted current. 

The mathematical character of these equations depends on the order of the 
primary circuit equation (Eq. (17)). If L # 0 then the circuit equation is of second 
order, which is the same order as the equation of motion for the particles of the 
plasma. If L = 0 but R # 0 then the circuit equation is of first order and becomes 
a time-dependent mixed boundary condition on the field equation (Eq. (19)). If 
L = R = 0, then the circuit equation becomes a simple mixed boundary condition 
on the field equation. Let us consider each of these three cases in detail. 

When L # 0, the circuit equation is of the same order as the particle equations 
and can be solved by the same type of leapfrog scheme, with the addition of the 
resistive term. (Other schemes are, of course, possible, but this is the simplest one 
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which is second-order accurate in time, and it meshes nicely with the particle 
mover.) Just as the position and acceleration of a particle is known at integral time 
steps and the velocity at half-integral time steps, so the charge and voltage are 
known at integral time steps, and the current (I= Q) is known at half-integral time 
steps. The difference equations for the circuit equation (Eq. (17)) are 

and 

I n + I/Z = (Qn + I - QnYAt (21) 

L (In+ l/2 -LI,z)+#~+,,~ +I,-~2) I Qn- v _ v 

At 2 
(t ) 

c n exi n . (22) 

These difference equations yield second-order accuracy in time. Equation (22) can 
be solved for Z, + ,,2, and Eq. (21) can be solved for Qn+ ,, thus advancing the 
circuit. The surface charge u is advanced by subtracting from it the amount which 
was added to Q (this is only the circuit contribution to the change in a-the plasma 
contribution must then also be taken into account). 

The way in which the advancement of the circuit is melded with the advancement 
of the plasma is diagrammed in Fig. 8. From a known voltage (implying a known 
potential within the plasma), the particles and the circuit can be advanced 
simultaneously. This advancement yields a new charge density p, and a new surface 
charge g (both the plasma and the circuit have altered a), which allow the solution 
of the field equation (Eq. (19)) producing the new potential and voltage. Numeri- 
cally, the solution of the circuit equation is equivalent to the solution of a single 
particle equation and should require about as much time. 

The initial conditions for the circuit equations require some care. It is natural to 
assign an initial value for the capacitor charge Q and an initial value for the current 
Z, since these are the standard initial conditions for Eq. (17). One more variable 
must be given an initial value in order to completely specify the initial conditions. 
Two logical candidates for this variable are V and 6. The choice between them is 
one of taste. as either one can be derived from the other. Since the circuit difference 

ADVANCE PARTICLES 

A 
f \ 

an-vn+1/2-xn+1 

+ En 
c- < 

Pn+l - +n+l*En+l 

M3 -h+l/2-Qn+l J 
v 

GIVEN AT 1, 
L J SOLVE FOR NEW FIELD 

V 

ADVANCE CIRCUIT 

FIG. 8. Scheme for advancing simulation one time step when L #O. Particles and circuit are 
advanced simultan&ously. 
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equation is a leapfrog scheme, it is also necessary to introduce the initial half time 
step offset between the quantities which are to be calculated at integral time steps 
(Q and V) and those which are to be calculated at half-integral time steps (I). This 
is done in essentially the same way that it was done initially for the particles (again, 
see [ 121 for a discussion): 

I- -I ; v. - Vext(to)- RI, -+ f. I/2- o-- 
[ 1 

(23) 

When L = 0 (but R #O), a different circuit equation is used-one of only first 
order. The leapfrog scheme cannot be used to advance the circuit in this case 
because it is numerically unstable for small values of L (including zero). This is due 
to the singularity of the limit L + 0. One of the natural frequencies of the circuit 
goes as R/L for small L, and will violate the stability condition R At/L < 1 as L + 0. 

A simple way of dealing with this circuit is to use a backward Euler method 
(which is only first-order accurate in At). This might seem unsatisfying in view of 
the second-order accuracy of the previous case, but the method has some virtues. 
The new circuit difference equation is 

z(Qn+, -en)+%= V,+l - J'e,t(tn+l). (24) 

Note that the equation requires the voltage at time step n + 1. This method 
requires a different approach than the L # 0 case. Equation (24) is useful because 
the capacitance between the boundaries of the simulation region (with the plasma 
locked in place) is known to be Co = AE~ 11. Thus, 

V II+1 - vi,, = -4 (en+, - QJ, (25) 

where Vk+l is the voltage which has been computed from the new particle positions 
and the old value of Q, i.e., after the particles have been advanced but without let- 
ting the circuit advance. Equations (24) and (25) can now be combined and solved 
for Q,,,, then V,,,, can be computed from either equation, thus advancing the 
circuit. A simple intuitive picture for this method is that the particles are advanced 
while the circuit is held fixed, then the circuit is relaxed, while the particles are held 
fixed. This scheme (which is implemented in PDWl) is diagrammed in Fig. 9. 

As was mentioned, this method is only first-order accurate in time. Second-order 
accuracy can be achieved using the following scheme which is not described in [ 121 
(see Appendix A for the derivation). Again, let Co =&A/l be the capacitance 
between the boundaries. If the plasma were not present, the circuit would be a 
simple RC circuit with capacitance C’ satisfying 

-=L+L. 1 
c’ c co (26) 
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RELAX CIRCUIT 

L / L Y Y 

GIVEN AT t, ADVANCE PARTICLES SOLVE FOR 

INTERMEDIATE FIELD 

FIG. 9. Scheme for advancing simulation one time step when L = 0. Particles are moved first, then 
circuit is relaxed. 

According to the exact solution of the differential circuit equation in a single time 
step, the charge on the capacitor would decay by a factor of exp( - At/RC’); 
however, due to the finite difference method, it would actually decay by a factor of 
l/(1 + At/RC’). Define R’ such that 

l+&=exp & , 
( ) 

then solving 

R, en+, -Q.+en.,= J'it+~ + V,+Qn vext(tn+,)+ ve,t(t,) 
At C’ 2 co 2 6’8) 

for en+, and using this to solve Eq. (25) for V, + i gives Q to second order. Even 
without this correction, the backward Euler method has the advantage that in the 
limits C + 0 and C -+ co, the numerical decay factor and the analytic decay factors 
are equal. 

It is also possible to achieve true second-order accuracy by resorting to three- or 
four-point schemes. (Such a scheme is given in [ 121, p. 416.) These schemes intro- 
duce spurious frequencies and require extra initial conditions, but if the scheme is 
chosen carefully, the spurious frequencies damp out quickly. Since the circuit 
advancement takes so little computer time, the only reasons for not resorting to 
some second-order scheme are inconvenience and some concern that the interaction 
between the leapfrog particle mover and the circuit may produce unexpected results 
due to the differences in the algorithms. The effects of this interaction have not, to 
my knowledge, been studied. It is to be hoped that they are inconsequential. 

The initial conditions for the L = 0 case are much the same, except that now the 
initial value of the current I cannot be specified, as it is determined by the initial 
values of Q and either 0 or I’. Since Eq. (24) is not a leapfrog scheme, it is not 
necessary to create a temporal offset in the current (which is no longer a dynamical 
variable anyway). 

The case for L = R = 0 represents a physical situation in which the external 
circuit comes to equilibrium instantaneously. Thus the concept of order of accuracy 
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no longer applies. Inspection will show that the same numerical algorithm 
(Eq. (24)) used for the previous case (L = 0, R #O) works in this case without 
modification. The sole difference is in the initial conditions. Now it is possible to 
specify only one of Q, CJ, and V at t = 0. If Q and CJ are both specified, the system 
will relax in one time step to the proper state such that Q + Aa is conserved. 

SUMMARY 

The problems created by the introduction of boundaries into a one-dimensional 
electrostatic simulation have been systematically examined and fully addressed. 
They include the problems of particles crossing boundaries, the solution of 
Poisson’s equation with non-periodic boundary conditions, and the proper 
accounting of charge flow, including an external circuit. 

As was mentioned in the Introduction, many of these problems have, of necessity, 
been addressed by previous simulators, but few have described their methods. The 
first-order correction on reflection, in particular, has not been noted before. The 
solution of Poisson’s equation is given much attention in periodic simulations, but 
the important differences created by the boundary are seldom noted in the literature 
and are sometimes ignored with unfortunate consequences. The simulation of an 
external circuit has received almost no attention in the literature until now. 

The methods presented here (as embodied in the PDWl code) have been used 
for over four years by many researchers on a wide variety of problems. When 
comparison with theory or experiment has been possible (which is most of the 
time), the results have been thoroughly reliable and quite accurate within the 
bounds imposed by the nature of particle simulation. 

APPENDIX A: DERIVATION OF EQ. (28) 

The equation to be solved is 

RCj+$= V(t)- Vext(t). (AlI 

The source term (V(t)) is not a simple source term, however, since V(t) is a 
function of Q through the capacitance of the plasma region. To solve this equation 
properly, it is necessary to find a source term which depends only on the particle 
dynamics. This is done by adding Q/C0 to both sides of Eq. (Al ), where C,, = +,A/1 
is the vacuum capacitance of the plasma region: 

RQ+Q+Q= V(t)+g- V 
c co CO 

(t) ext . WI 



BOUNDED 1D PLASMA SYSTEMS 273 

The right-hand side of Eq. (A2) is now a function only of time and the particle 
motions-not of the charge Q. This is because it is what the voltage would be 
(plus the bias) if the external circuit were open, i.e., if no current flowed through 
the external circuit. This is easy to see, since if the charge which has flowed through 
the circuit into the capacitor were sent back to the boundary surface charge, the 
voltage would go up by Q/C,. 

This reasoning does not take into account the effect of feedback from the voltage 
V(t) on the particle motions. If the circuit advancement is second-order accurate, 
though, then the forces on the particles will be accurate to second order, and if the 
particle trajectories are accurate to second order, then the forcing term of the circuit 
will be second-order accurate. Thus the second-order accuracy of the whole scheme 
hinges on the second-order solution of Eq. (A2). 

When the right-hand side of Eq. (A2) is zero (the vacuum case), the solution for 
Q is a dying exponential with time constant RC’, where 

The stable backward Euler finite difference method for this problem is 

R’ en+ I -Qn I Qn+lpo 
At C’ (A3) 

(R’ has been used instead of R in anticipation of the need for a correction). The 
solution to Eq. (A3) decays in one time step by a factor of l/(1 + At/R’C’), so that 
if R’ is chosen so as to satisfy 

(A4) 

then the solution to Eq. (A3) will be the exact solution of Eq. (A2). 
The source term must now be added to this scheme in such a way as to retain 

second-order accuracy. Let the entire source term be denoted by F(t), i.e., 

F(t)= V(t)+$- Vext(t) 

0 

then the correct method of introducing F into Eq. (A3) is 

R, en+, -Q.+Q.+l 1 
At -=2 (F,r+l +FJ C’ 

This correctness will now be shown. 
To simplify the algebra, let T = RC’ and 2 = RI/R, then Eq. (A5) becomes 

Q n+~ -Qn+e.,l=!F,+~ +Fn 
At 2s i. 2R 

(A5) 

(A(3) 
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with 

(A7) 

(this is just the definition of R’ rewritten in terms of i and 5). 
Solving Eq. (A6) for Q,, + , gives 

The factor multiplying QH+ 1 is just exp(dt/r), so 

Q”,, =[Q,+$(F”+;,fFn)]exp( -$). (A9) 

Each of the quantities on the right-hand side must now be expanded to second 
order in dt. The exponential is just 

(AlO) 

Rather than expand l/J, it is easier to expand exp( - At/r)/1 using Equation (A4): 

iexp( -$)=:[I-exp( --$)I 

(All) 

(Only a first-order expansion is needed here since the term containing 2 is 
multiplied by At.) The source function F can also be expanded: 

F ,,+, =F,, +&At. 

(Again, only a first-order expansion is necessary.) So, 

f(Fn+, +F,)=F,+;&At. 

This can be simplified by using the differential equation 

(A12) 

(A13) 

and its derivative 
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to get 

275 

(A14) 

Substituting all these expressions into Eq. 

Q,,+l =g.(l-$+f$) 

(A9)> 

=Qn+&At+&Af2 (Al51 

to second order. This is the correct expansion for Qn+ I to second order, so the 
scheme is second-order accurate. 

To derive Eq. (28) it remains only to manipulate the right-hand side of Eq. (A5) 
using Eq. (25): 

Q F+ v, +g 
0 0 

1 =- 
2 Vl,l 

+& f Qn Qn+, I Q~+I I v 
co co co n co 

+v,+ v:,+,)+$. 
0 

6416) 

The ultimate result, when all substitutions are made, is Eq. (25): 

R, en+, -Qn I Qn+t- K+I + Vn I Qn Vext(ca+l)+ Vc,t(t,J 
At C 2 co 2 . 
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